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However, the fragment-development component is 
not available with SA YTAN87 as yet. The test results 
we report have been carried out with a program based 
on MULTAN80 which stores information, including 
data, in a way different from that in SA YTAN87. 

We wish to record our gratitude to the European 
Economic Community, the Science and Engineering 
Research Council and the Deutsche Forschungs- 
gemeinschaft for their support of this research. We 
are also grateful to a referee for his helpful comment 
which we have quoted and other useful suggestions 
on presentation. 
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Abstract 

General equations are presented for the diffuse 
scattering due to local atomic arrangements and 
displacements in disordered alloys having h.c.p. 
structure. The scattering due to static and dynamic 
displacements is treated separately. The calculations 
show that the second-order terms in displacements 
are sufficient for observing the direct effect of tem- 
perature factors, common to all contributions of 
diffuse scattering. A new data analysis scheme, using 
asymmetry of diffuse scattering around superlattice 
reflections, is presented for a complete separation of 
various components. 

Introduction 

Since the early experiments of Wilchinsky (1944) and 
Cowley (1950), most quantitative studies of diffuse 
X-ray or thermal neutron scattering to reveal local 
atomic arrangements in disordered alloys have been 
carried out on systems having f.c.c, structure. The 
techniques for interpreting the diffraction pattern, 
data and error analysis are still evolving; see Boric 
& Sparks (1971), Gragg, Hayakawa & Cohen (1973), 
Hayakawa & Cohen (1975), Tibballs (1975), Khanna 
(1984) for the latest procedures. Although there are 
a large number of alloy phases which possess h.c.p. 
structure at high temperatures and which undergo 
ordering on cooling, general equations for diffuse 
scattering from such alloys have not yet been pre- 
sented. Development of these equations and the 
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separation procedures will be the principal subject 
of this paper. 

After a brief review of the diffraction theory for 
disordered alloys, general equations are derived for 
the diffuse scattering due to short-range order and 
displacements (both static and dynamic) from h.c.p. 
alloys. Dynamic displacements due to thermal vibra- 
tions are treated separately to account properly for 
their effect on other components of diffuse scattering. 
Procedures for data analysis and separation of various 
diffuse scattering components are also discussed. 

1. Diffraction theory 

From kinematic theory, the total scattered intensity 
from a disordered binary alloy can be written as 

Itot = ~ f:kfrk'exp[iQ.(rik--rrk')]. (1) 
i,1' 
k,k' 

J~k represents the atomic form factor of an atom 
located at position rig. I and k are lattice and sublattice 
indices respectively. Q is the diffraction vector. Let 

i Xk be the sublattice fraction of atom i on sublattice 
k and let piJk k, represent the conditional probability 
of finding a j-type atom on the k'th sublattice of the 
/'th lattice point if there is an/-type atom on the kth 
sublattice of the lth lattice point. Equation (1) may 
then be written as (Hayakawa & Cohen, 1975) 

/tot ~. i ij = Xkftkfrk'Pkk'exp[iQ.(rtk--rrk')]. (2) 
i,l' 
k,k' 
i,j 
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Owing to static and dynamic displacements, the 
atomic positions rtk differ slightly from the average 
lattice vector R~k of the disordered alloy. With the 
decomposition r~k = R~k + Utk +Stk, where u and 8 are 
respectively the static and dynamic displacements, 
/tot reduces to 

itot= Z , 0 Xkftkfrk'Pkk' 
l ,r  

k ,k '  
i , j  

x exp [ iQ .  ( R t k  - -  Rrk,)] 

x (exp [ iQ .  (Ulk--U~'k')]) 
• ( ~ t k -  S~ ,k , ) ] ) .  x (exp [ iQ i (3) 

Let us first evaluate the contribution due to dynamic 
effects. For small displacements we have 

(exp [ iQ .  (8' Ik - -  ~ J ' k ' ) ] )  

--exp [-½([Q ' • (~itk -- ~i/.k.)l=)]. (4 )  

Since, in a random solid solution, thermal vibrations 
are determined only from the averaged interatomic 
potential of the alloy, the space and time average in 
(4) will depend only on the interatomic vectors and 
not on the individual atomic pairs of the alloy. If we 
express the value of thermal displacements (Willis & 
Pryor, 1975) in terms of lattice vibration modes and 
assume the phases of all modes to be independent, 
the average in (4) reduces to 

exp[- tOk(Q)]exp[- tOk, (Q)] [ l+  I , ( Q ) + . . . ]  (5) 

where 
Ej(q) 

1 ~ [ Q . e ( k / j q ) 1 2  }(q) 
o . , k ( Q )  - 2Nmk jq 

1 ~ Ej(q) 
I ' ( Q ) = 2 N [ m ( k ) m ( k ' ) ] l / 2 .  to](q) 

x {[Q. e(k]jq)][Q .e*(k'ljq)] 

(6a) 

x exp [iq. (Rzk -- Rrk,)] 

+ [ Q .  e*(kljq) ][ Q .  e(k'[ jq) ] 

Xexp[--iq.(R,k--Rrk,)]}.  (6b) 

mk is the mass of an average atom in the kth sublattice 
in the random solid solution and N is the total number 
of unit cells in the lattice. Ej(q), tot(q) and e(kljq) 
are, respectively, the energy, frequency and polariz- 
ation of the vibration mode (jq). II(Q) represents 
terms due to first-order thermal diffuse scattering. 
Contributions due to higher-order terms have been 
neglected. 

Substituting (5) in (3) we have 

/tot ~ . i , - ,  ,-, nu = x k J r k j r k , r k k ,  e x p [ i Q . ( R l k - - R r k , ) ]  
I,r 

k , k '  
, , j  

x(exp[ iQ. (Ulk-Uj ,  k,)])[l+It(Q)] (7) 

where 

f[k=ftk exp [--tOk(Q)]. 

Note that the thermal Debye-Waller factor extends 
over all reciprocal space and is not restricted to 
the volume just near Bragg peaks. Expanding 
exp [ iQ .  (Ulk--U~,k,)] as a Taylor series and retaining 
terms up to the second order in dispacement, we have 

/tot )-', ' -  j ~"~" = XkXk'JiJj exp [ i Q .  ( R l k  - -  R r k , ) ]  
i,l' 

k ,k '  
i , j  

kk '  

x exp [ iQ .  (R,k - Rrk.) ] 

x r Y Y  ' J ' Xk"Xk"(f, _fj)2]- ,}  
k" , > j  

+ i ~, F~k,(Q. (U'k--UJk,)) exp [iQ. (Rik--Rrk,)] 
l,i' 

k , k '  
' , j  

+½ ~ F~k,([Q. (U~--u~,)] 2) 
I,l' 

k , k '  
' . j  

x exp [ iQ .  (Rtk  -- R / ' k ' ) ]  

+ ~ _ i ,-, ~-,,-,0 )) XkJ, Jr rkk' exp [ iQ.  (Rzk- Rrk,)] 11 (Q 
l,l" 

Iqk'  
i , j  

where 

(8) 

~J = 1--( P~k,/XJk) (9a) Ol kk '  

, , 2 (  , . . j ~ , j  '~ 

' j t r 2 x ~ Xk"Xk"(f,-- (9b) 
k" 

i > j  

FiJkk ' i j , , ij = XkXk'fifj(1 -- a kk') 

[ it x 2 ' J ' (9c) Xk"Xk"(f, _f j)2 
k" 

, > j  

ILM N E E  ' j ' = X k X k ( f  i _f])2. (9d) 
k i > j  

The first and second sums in (8) represent contribu- 
tions due to Bragg reflections and short-range order 
(SRO) respectively, a represents the Warren-Cowley 
order parameter. The third and fourth sums represent 
diffuse scattering due to static displacements and the 
fifth one is due to first-order thermal diffuse scattering. 
ILM gives the Laue monotonic scattering. For sim- 
plicity, the primes on the form factors will no longer 
be employed. 
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2. Scattering equations for a h.c.p, lattice 

We first introduce some notation. In Cartesian co- 
ordinates, a position vector R(/, m, n) in a h.c.p, lattice 
can be represented as (Khanna, 1982) 

R(/, m, n)=l(a/2~/3)i+ m( a/2)~ + n( c/2)~ 

where l, m and n have integer values, a and c are 
respectively the basal lattice constant and the separ- 
ation between two atomic planes parallel to the basal 
plane. The symmetry of a h.c.p, lattice permits a set 
of eight vectors R(+/, +m, +n) (having identical 
absolute values of l, r~ and n) for connecting two 
points lying on the same sublattice (n even). For 
connecting two points lying on different sublattices 
(n odd), only a set of four vectors R(/, ±m, +n) is 
permitted. Another geometric feature ofa h.c.p, lattice 
is that the reciprocal-lattice vector Q may be 
represented as 

Q(h~, hl ,  h~) = (27r/x/3a)h~¢ + (27r/a)h'2~ 

+ (27r/ c)h'3~. 

= hlbl + h2b2 -I- h3b3 (10) 

=-~(h~+h'2) and h3 = h:~. The b where h~ = hl ,  h2 1 , 
vectors represent reciprocal-lattice unit vectors. 

From (8), the diffuse intensity from a disordered 
h.c.p, alloy can then be written in a form similar to 
that for cubic lattices as 

I'D = ID/  /LM 

= ISRO-~ h~Qx(h~, hE, h3)+ hEQy(hl, hE, h3) 

+ h3Qz(ha, hE, h3)+ h2gx(h~, hE, ha) 

+ hERy(h~, hE, h3)+ h2Ry(h~, h2, ha) 

+ h~h2Sxy(h~, hE, h3)+ h2haSyz(h~, h2, h3) 

+hlhaSx~(h~,h2, h3)+ITos/ILM (11) 

ISRO=4~ 2 COS "a'h~l+ Y. ~exp(i'rrh~l) 
m n n 1 

× cos 7thEm cos ¢rh3nSt,,,,, 

Q~(h~, hE, h3) = 4 ~ 2 sin ~rlh~ 

o d d  ] 

+ al ~ ~ exp (izrhl I) 
n l 

x cos ~mh2 cos  7rnh3etXmn 

R~ = 4 ~ 2 cos ~rlh~ + Y'. ~ exp (i~lh~) 
m n i n 1 

X COS "n'mh2 cos "trnhadtXn 

[= )] S~y = 4 Y. 2 2 ~ sin ~lh 1 - al 2 ~, exp (ilrlh~ 
m n 1 n 1 

xy (12) x sin qrmh2 cos 7rnha'Ytm,, 

and similarly for other terms. 

- i  for x components 
al = +1 fory  and z components. 

The coefficients for these series are defined as 

8,m, = ~ X~XJk,(f, _f])2 a ~k'(Imn) 
Xk"Xk"(f,-fj) y y  , j , , 2  

i > j  
k "  i > j  

et,,,,,=2~i Fkk,((Zlkk') )t,,,,, 
• k k '  

• k k '  

• " k k '  

where 
• x,  i x x'i-u~J and A~ 'i U k • A k k , - -  U k --" 

(13) 

3. Separation of components 

For a complete separation of contributions from 
different sources, the diffuse scattering data should 
be analysed in two steps. 

3.1. Borie-Sparks method 

As a first step, the data should be analysed accord- 
ing to the Boric & Sparks (1971) (B-S) method, 
making use of the periodic nature of terms in (11). 
For this purpose, the TDS contribution can be 
clubbed along with the second-order static displace- 
ment scattering (R and S terms). As ISRO, Q, R and 
S terms are Fourier series (variation of the ratio of 
the atomic scattering factor with the scattering vector 
Q being neglected) with a periodicity of two, their 
contribution may be separated as follows: 

Rx = ~{[ Io(h, ,  h2, h3)-  I o ( h , -  2, h2, h3)] 

- [ I o ( h l - 2 ,  h2, ha) -  lo(h~-4,  h2, h3)]} 

Sxy = ~{[ Io( h, , h2, ha) -  Io( h, - 2, h2, ha)] 

-[Io(ha,  h2-2 ,  ha ) -  Io (h , -2 ,  h2-2 ,  h3)]} 

Qx = ½{[ ID(h~, hE, ha) - Io(h~- 2, h2, ha)] 

- 4 ( h ~ -  1)Rx(hl, hE, ha) 

-2h2S,,y(h~, h2, ha)-2h3S,,~(h~, hE, h3)} (14) 

and similarly for other terms. Once Q, R and S are 
known, ISRO can be obtained from (11). 

As the basic periodicity is two for cubic and h.c.p. 
crystals, the separation expressions for both these 
structures have a similar form. But there are some 
subtle differences between the two. For example, in 
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a cubic crystal we have 

Qy(hl,h2, h3)=Qx(h2, hl,h3) (15a) 

Q~(hl,hE, ha)=Qx(ha, h2, h~). (15b) 

These equalities arise due to the following assumption 
regarding the displacements: 

x 
U l m n  = UYmln = U,,mtZ . (15c) 

As the lattice response of a cubic crystal is identical 
along three crystallographic axes, the distorting forces 
are assumed to be radial in nature for (15c) to hold. 
For a h.c.p, crystal, while the assumption regarding 
forces is still true, the lattice response is no longer 
identical along different crystallographic axes. 
Equation (15a) still holds due to the isotropy in the 
basal plane, but (15b) holds only for crystals having 
the ideal c/a ratio and not for highly anisotropic 
crystals like zinc and cadmium. 

3.2.3 
Qx terms are asymmetric about reciprocal-lattice 

points. 

I~s = (H + q)Qx(H + q, 0, O ) - ( H - q ) Q x ( H - q ,  0, 0) 

= 8 H 2 e , , ,  cos "a'lH sin rdq 
rrl 

odd ] 
+2 Y. eta,, exp (irtHl) sin 7rlq 

/1 

= 1 6 ~ ' H q ~  e,~,,l(- 1)"' 

odd ] 
+ Y. exp(izrHl)el~, . (16) 

n 

The coefficients e x are independent of the wave- 
vector and remain unaffected. 

3.2. Separation of the thermal component 

As a second step we look at the asymmetry of each 
term in (11 ) about the (H00) superlattice points along 
the [H00] direction in reciprocal space. 

3.2.1 
ISRO symmetric about reciprocal-lattice points. S 

terms vanish along the [H00] direction. 

3.2.2 
To evaluate the contribution of R terms to the 

asymmetry of diffuse scattering, we consider the 
microdomain model for disordered alloys (Das & 
Thomas, 1974). According to this model, a disordered 
binary alloy with persisting short-range order can be 
viewed as consisting of a large number of highly 
ordered microdomains embedded in a randomly 
disordered matrix. The anti-site size effect in these 
ordered domains/clusters causes a static displace- 
ment of atoms in the cluster itself and affects the 
atoms of the disordered matrix in the continuum limit. 
As far as scattering around reciprocal-lattice points 
is concerned, these clusters can be treated as defects. 
A main contribution to diffuse scattering in this region 
arises due to the elastic displacement field of the 
defect and can be quite intense. However, this contri- 
bution vanishes around superlattice reflections due 
to space-group reflection conditions. The only contri- 
bution to diffuse scattering is then due to the strongly 
distorted neighbourhood of the defect. This is very 
small, especially near Bragg peaks, as a small number 
of atoms (in contrast to the elastic field) participates 
in scattering. R terms, which are due to the second 
power in static displacements, will in general be quite 
small and their contribution to asymmetry can be 
neglected. 

3.2.4 
l~Q) _ ~  x~ x~,fifj, j~q Ei(q) 

TDS-- , 2"N (mkmk----~)i/2 . to2(q) 
kk" 
q 
× {[Q. e(kljq)][Q, e*(k'[jq)] 

x exp [ iq. (Rig -- Rrk,)] 

+ [ Q. e*(kljq)][ Q.  e(k'l jq) ] 

x exp [ - i q .  (Rtk --Rrk')]}. (17) 

The contribution from first-order TDS can be split 
into two parts: the continuously varying background 
due to the Q2 terms in (17) and the fairly sharp peaks 
at Bragg reflections due to the 1/to2(q) term. Since in 
the disordered phase the average structure consists 
of a randomly disordered alloy the peaks in TDS will 
appear only near fundamental reflections. Near the 
superlattice positions, we have a contribution mainly 
from the continuously varying background. Near a 
superlattice reflection: Q = H + q ,  where H is a 
reciprocal-lattice vector and q < H ,  l'ros can be 
written as 

ITDS = Q2f(q) (18) 

where f(q),  symmetric with respect to q-~ -q ,  can be 
obtained from (17) in a straightforward manner. The 
asymmetric part of TDS about (H00) reflections can 
then be written as 

[ ITDS]As=4Hqf(q). (19) 

3.2.5 
TAS(q) can now Total asymmetric diffuse scattering tot 

be written as 

Tro t  [ i _ i  ~ x -As,--.q) 4Hqf(q)+ 16zrHq ~, letm.(-1)"' 
I,m 

odd 1 + ~ exp (iTrHl)le,X,, . (20) 
rl 
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The contribution to asymmetry from hQx terms can 
be calculated analytically from the coefficients 
obtained in step 1 using B-S analysis (§ 3.1). These 
coefficients are not affected in the present scheme of 
separating thermal and static components, f(q) can 
then be obtained from the experimentally observed 
asymmetry of diffuse scattering. In a similar manner 
f(q) and hence ITDS can be evaluated in different 
directions of reciprocal space. In this way the contri- 
bution from TDS can be obtained in a straightforward 
manner without actually computing mode fre- 
quencies using elastic constants. This method has the 
further advantage of yielding ITDS over a range of 
temperatures, and an additional knowledge regarding 
the temperature dependence of various physical 
parameters is no longer required. 

Once the contribution from TDS has been sub- 
tracted, the remaining diffuse intensity can be 
reanalysed using the method outlined in step 1 (§ 3.1). 
The coefficients thus obtained will have contributions 
only from static displacements. 

Concluding remarks 

Hayakawa, Bardhan & Cohen (1975) suggest the 
inclusion of higher powers of u in the expansion of 
exp (iK. u) for observing the direct effect of tem- 
perature factors, common to all contributions of 
diffuse scattering. This is not strictly true [see equation 
(7)] as 82 terms due to thermal vibrations suffice to 
produce the above mentioned effect and higher 
powers are not in general required, u 2 terms included 
in the present formalism correspond to static distor- 
tions and they are expected to yield information about 
the strongly distorted neighbourhood around the core 
of the SRO domain/cluster. 

We should also note a basic difference between 
static and dynamic Debye-Waller (DW) factors. 
Static distortions attenuate atomic form factors only 
near fundamental reflections and do not modify scat- 
tering elsewhere in the reciprocal space (Khanna, 
1984). On the other hand, the dynamic DW factor, 
in addition to affecting Bragg peaks, attenuates diffuse 
scattering from other sources as well. This result has 
an important implication. According to (7) the experi- 
mental diffuse scattering data have to be weighted 
by the thermal DW factor exp [-tOk(Q)]. Since it is 
rather difficult to calculate exp [-tOk(Q)] accurately, 
Bardhan & Cohen (1976) employed the ratio 
I(100)/I(300) (for f.c.c, crystals) to obtain 
exp [-2to(Q)]. Their claim, that the DW factor thus 
obtained contains both static and dynamic contribu- 
tions, is however not correct. I(100)/I(300), the ratio 
of scattered intensity at superlattice reflections, con- 
tains only dynamic contributions and yields the cor- 
rect DW factor needed to reduce the experimental 
diffuse scattering data. 
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Abstract 

An iteration method is presented for calculation of 
the gross physical properties of polycrystals in terms 
of the physical properties of the crystals. No assump- 
tions are made concerning the shape or behaviour of 
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the crystallites. The only mathematical condition to 
be fulfilled is that the product of the matrix of a gross 
physical property with its inverse must give a unit 
matrix if the same is valid for the crystals. The method 
is demonstrated by the calculation of the effective 
elastic tensor of a hypothetical texturized polycrystal 
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